Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Blood ; 138(SUPPL 1):400, 2021.
Article in English | EMBASE | ID: covidwho-1770467

ABSTRACT

Introduction Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, is particularly serious in patients with multiple myeloma (MM), with estimated mortality of over 30% in several studies. In the general population, SARS-CoV-2 vaccination has been demonstrated to be an effective approach to preventing infection. However, patients with MM were not included in vaccination trials. Recent studies suggest that patients with compromised immune systems exhibit reduced antibody response to SARS-CoV-2 vaccination, and MM patients are often immunocompromised both due to MM itself and due to MM treatment. Thus, the objective of this retrospective cohort study in the national Veterans Affairs (VA) healthcare system was to evaluate the real-world effectiveness of SARS-CoV-2 vaccination to prevent COVID-19 infection in MM patients during the 140-day period following initial vaccine availability. Methods This is a multicenter study of SARS-CoV-2 infection among vaccinated and unvaccinated patients at VA hospitals nationwide during the period from 12/15/2020 to 5/4/2021. We identified a cohort of MM patients who were alive and without prior SARS-CoV-2 infection on their date of vaccination or inclusion as a control. For added comparison with a less immunocompromised population, we also identified a cohort of cancer survivors, defined as patients with any solid or hematologic malignancy who had been treated with systemic cancerdirected therapy subsequent to 8/15/2010, but had not been treated with such therapy in the 6 months prior to vaccination or inclusion as a control, and were alive and without prior SARS-CoV-2 infection on that date. Vaccinated patients were exactly matched 1:1 to unvaccinated controls on race, VA facility, rurality of home address, cancer type, and treatment timing and modality with minimum distance matching on age. The primary exposure was receipt of a SARS-CoV-2 vaccine. The primary outcome was laboratory-confirmed SARS-CoV-2 infection. Vaccination effectiveness was defined as 1 minus the risk ratio of SARS-CoV-2 infection for vaccinated individuals compared to unvaccinated controls. Results 6,891 MM patients met eligibility criteria and 4,367 were vaccinated during the study period. Of those, 1,606 vaccinated MM patients were matched 1:1 to 1,606 unvaccinated or not yet vaccinated controls. In addition, for comparison, 2,476 vaccinated cancer survivors were matched 1:1 to 2,476 unvaccinated or not yet vaccinated controls. Median follow-up was 44 days among MM patients and 46 days among cancer survivors. Vaccine effectiveness in the matched cohort of MM patients was 22.2% (95% CI, -133 to 82.7%) starting 14 days after the second dose. In contrast, effectiveness was 82.3% (95% CI 16.4 to 100%) starting 14 days after the second dose in the matched cohort of cancer survivors. Among vaccinated MM patients in the matched cohort, 14 (8.7 per 1000 patients) were infected with SARS-CoV-2 subsequent to vaccination. Among vaccinated cancer survivors in the matched cohort, 10 (4.0 per 1000 patients) were infected subsequent to vaccination. Conclusion Vaccination is an effective strategy for preventing SARS-CoV-2. However, effectiveness may be reduced in patients with MM, likely due to a co-existing immunosuppression both due to the disease process as well as associated therapy. Future studies are needed to evaluate the relationship between MM disease states, types of therapy used and treatment timing that may impact vaccine effectiveness, and to also determine if MM patients would benefit from post-vaccination serologies or a booster vaccination.

2.
International Journal of Remote Sensing ; 42(16):6128-6154, 2021.
Article in English | Scopus | ID: covidwho-1281775

ABSTRACT

The COVID-19 (COronaVIrus Disease) pandemic has been spreading globally and social isolation has been implemented as an effective solution to limit the spread of the pandemic before vaccines are developed successfully. The reduction of human activities during social isolation is leading to an improvement in air quality being observed worldwide. In this study, we analysed satellite TROPOMI (TROPOspheric Monitoring Instrument) NO2 (Nitrogen Dioxide) and OMI (Ozone Monitoring Instrument) NO2 products obtained from Sentinel-5P and Aura satellites, respectively, during the social isolation from 1 April 2020 to 22 April 2020 in Vietnam where air pollution is a serious environmental issue. Both TROPOMI and OMI NO2 have shown low agreement with local on-ground NO2 concentration (the correlation coefficient r equals 0.4 and 0.3 in 2020, respectively) but have had moderate correlation with each other in 2020 (r equals 0.81 for two annual averaged maps). In addition, the moderate available data ratio over cloudy northern areas were observed, especially for TROPOMI datasets. During social isolation, the national average NO2 decreased by 9.3% for TROPOMI and 7.2% for OMI, respectively, in comparison with the same periods in the previous years. The reduction was stronger in the North than in the South and lasted for one more month after the lockdown period. The decrease of NO2 density during the lockdown was observed strongly in urban areas associated with dense population, traffic density, and industrial zones. Further analysis of NO2 density for Ho Chi Minh city revealed a decreasing trend of NO2 during social isolation (16.62% and 11.77% compared with the previous month and the same period in 2019, respectively). Furthermore, we used a random forest model to estimate the NO2 density (normal life situations) based on daily meteorological data at station. During social isolation, NO2 density observed in Ho Chi Minh city decreased by 26% down to that of normal life situations. The NO2 reduction has shown strong anthropogenic impact on air pollution over the study area. Besides, the first use of TROPOMI and OMI NO2 products together has highlighted potentials of satellite observation for air quality monitoring and analysis in Vietnam where on-ground measurements are very limited. © 2021 Informa UK Limited, trading as Taylor & Francis Group.

SELECTION OF CITATIONS
SEARCH DETAIL